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Abstract

Mapping employees to standardized job taxonomy labels is critical for organiza-
tional analysis, but manual normalization of diverse job titles is time-consuming and
difficult to scale. Job titles like “Front-end Developer,” “Payroll,” or “Data Analyst”
must be classified into standardized function and sub-function categories to enable
effective benchmarking and strategic planning. We present an automated approach
using large language models (LLMs) with retrieval-augmented generation (RAG) to
address this challenge. The system works in three steps. First, enriched taxonomy
entries are embedded into a vector database. Second, the most relevant candidates
are retrieved for each employee. Third, an LLM assigns labels using hierarchical con-
text from the organization, including manager chains, peers, and direct reports. Each
employee receives a ranked shortlist of plausible labels to speed human validation and
correction. On a representative technology/media roster the correct label appears near
the top (MRR 0.64); across synthetic rosters spanning multiple industries MRR spans
0.26–0.64.

1 Introduction

Roster mapping—assigning each employee to a standardized taxonomy label—is a critical
input for organizational transformation. By mapping employees to a curated job taxon-
omy, analysts can benchmark organizations against industry standards, plan headcount
changes, reorganize management structures, and optimize onshoring/offshoring strategies.
However, this task is complicated by the diversity and inconsistency of job titles across
organizations. Manual normalization of titles is time-consuming and difficult to scale, par-
ticularly when dealing with large organizations where thousands of employees must be
mapped to standardized function and sub-function categories.

These challenges stem from multiple sources. Job titles are frequently untidy due to
non-standard naming conventions—“software developer” in one roster might appear as
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“SDE” in another. Titles also exhibit semantic closeness that depends on organizational
context and required skill sets. For example, “Project Manager” and “Product Manager”
are semantically similar and sometimes confused, even though they represent distinct roles
whose responsibilities may overlap or diverge depending on the organization.

Beyond title-related issues, a roster’s structure, completeness, and accuracy are not
guaranteed. Internal classification schemes may suit local operational needs yet misalign
with transformation objectives. Available data for each employee may be minimal—
sometimes only a title and a manager. Organizational graphs can also be malformed:
employees with multiple managers, orphaned executives, or broken reporting chains. These
challenges are particularly acute in organizational roster mapping because the goal is to
produce consistent, accurate labels that are mutually exclusive and collectively exhaus-
tive across the entire organization for ease of interpretation and meaningful analysis. This
requires adapting to diverse industries and evolving taxonomies while handling the idiosyn-
cratic, non-standard job title naming conventions used within specific organizations—often
without access to substantial domain-specific training data.

Our solution navigates these challenges to produce high-quality mappings that help pro-
duce insights on organizations. We frame roster mapping as a data classification problem
and employ a modern approach of using an LLM-based classifier with retrieval-augmented
generation (RAG) to efficiently handle large taxonomies [5]. The RAG architecture com-
bines embedding vector databases for efficient candidate retrieval with LLM-based clas-
sification that leverages both organizational context (reporting relationships, hierarchical
position, peer titles) and the reasoning capabilities of large language models. By retrieving
the most relevant taxonomy candidates before classification, the system scales effectively
to large taxonomies while maintaining classification accuracy. This approach enables rapid
adaptation to new taxonomies and diverse organizational contexts without requiring ex-
tensive retraining, addressing key limitations of prior methods that focus primarily on job
title text alone.

2 Related Work

Job title classification and normalization have been active areas for application of natural
language processing (NLP) techniques as this standardized data is useful for talent man-
agement and recruitment activities. Earlier approaches used traditional machine learning
classifiers, demonstrating improvements using word and document embedding techniques
like word2vec [8]. More recent work has explored deep learning architectures to capture
semantic relationships in job titles [4, 1, 3]. Notably, JobBERT [2] developed a BERT-based
model trained on job postings to learn representations that link titles with required skills.
Other systems like JAMES [6] have utilized multi-aspect graph embeddings to normalize
job titles by combining semantic, syntactic, and contextual information.
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3 Problem Definition

3.1 Roster Mapping Problem

We have an employee roster set X and a taxonomy set

T = {(f, sf)1, (f, sf)2, . . . (f, sf)m} (1)

where T is a collection of function f and sub-function sf tuples. A job function broadly
describes what a particular role is responsible for in an organization, and a sub-function
more granularly describes duties specific to a given job function. Examples include (En-
gineering, Front-end Developer), (Human Resources, Payroll), or (Finance, Analyst). In
the typical use case, organizations are large and many employees are mapped to the same
taxonomy tuple, thus |X| ≫ |T |, but this is not guaranteed. For instance, a typical
organizational taxonomy might contain more than 400 entries, so |X| < |T | for small
organizations.

Taxonomies can be provided by clients or constructed by analysts based on industry
standards and the organization’s context. In addition to the (job function, sub-function)
tuples, taxonomies may also contain additional metadata like organizational division, se-
niority level, or typical responsibilities to aid in classification.

Each employee has a collection of characteristics (like manager, industry, compensation,
etc.):

Employees = {xi ∈ X|xi = (xi1, xi2, . . . xij)} (2)

where j is determined by the information available about each employee1. At a mini-
mum, the roster mapping solution needs employees’ managers and titles, so j ≥ 2. Ideally
we obtain as much hierarchical employee information2 as possible to differentiate between
ambiguous titles. For example, x1 and x2 might both have the generic title of “Analyst,”
but if we know x1’s manager has the title “Finance, Vice President” and x2’s manager
has the title “Marketing, Vice President,” we can reasonably infer that x1’s assignment is
(Finance, Data Analyst) and x2’s assignment is (Marketing, Business Analyst).

We aim to assign to each employee xi a taxonomy entry ŷi ∈ T with confidence ci.
Essentially we estimate a roster mapping function

g(xi;T ) = (ŷi, ci) (3)

which is a well-understood classification problem. In addition to providing a final
taxonomy label ŷi for each xi ∈ X, g(·) also outputs a ranked list of other taxonomy
candidates [ŷi1, ŷi2, . . . ŷik]. This is done because the roster mapping tool is intended to

1Organizations are asked to provide as much information as possible about employees in tabular form.
Employee characteristics are thus contained in data columns

2Hierarchical information includes information about the employees surrounding a given employee, i.e.
manager title, skip-manager title, peer-level titles, direct reports, reporting chains, etc.
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be used as a first pass algorithm before human review; the tool is not intended to create
final mapping decisions. If a human reviewer disagrees with the inferred ŷi, they can refer
to the generated list of other taxonomy candidates, which are likely to contain acceptable
answers.

3.2 Evaluation Metrics

Measuring the model’s performance is relatively straightforward. Given a complete dataset
with ground-truth taxonomy mappings yi ∈ Y ,

D = {(x1, y1), (x2, y2), . . . (xn, yn)} (4)

we can calculate accuracy 3 as

Accuracy =
1

n

n∑
i=1

1(yi = ŷi) (5)

where ŷi = g(xi;T ) and mean reciprocal rank (MRR) as

MRR =
1

n

n∑
i=1

1

ranki
(6)

where ranki is the rank of yi in the ranked list of taxonomy candidates for xi. If the
list does not contain yi, the reciprocal rank is considered to be 1

∞ = 0.
Perfect accuracy in this setting is not possible to achieve because we are asked to pick

the one best option out of many highly relevant candidates to ease downstream decision-
making. An expanded measure of accuracy, which we refer to as HitRate@k, considers
whether yi is found in the top-k candidates [ŷi1, ŷi2, . . . ŷik]:

HitRate@k =
1

n

n∑
i=1

1(yi ∈ [ŷi1, ŷi2, . . . ŷik]) (7)

To evaluate the position of the correct answer in the ranked list of candidates, we use
MRR as defined in Equation 6. MRR captures how highly the correct answer is ranked
among the candidates; a higher MRR indicates that the correct answer tends to appear
closer to the top of the list.4

3Unless otherwise specified, Accuracy refers to exact-match accuracy on the final (function, sub-function)
label; component-wise (function-only or sub-function-only) results are distinguished explicitly where re-
ported.

4We use MRR and HitRate@k rather than Precision@k or Recall@k because we enforce exactly one
correct taxonomy entry yi per employee xi to maintain label mutual exclusivity and avoid ambiguity.
With a single relevant item, Precision@k and Recall@k necessarily yield low scores unless the correct
answer appears within the top-k positions, providing little insight beyond what HitRate@k and MRR
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4 Motivation and Design Considerations

Prior work has advanced job title normalization, but roster mapping at enterprise scale
presents distinct challenges that existing approaches do not fully solve:

• Messy, organization-specific titles: Internal titles are abbreviated, stylized, or
overloaded (e.g., “SDE,” “Contractor,” “Chief of Staff” used across functions). Meth-
ods trained on public job postings struggle to consistently map these to mutually
exclusive, collectively exhaustive taxonomy entries required for transformation anal-
ysis.

• Hierarchy-dependent disambiguation: Human analysts rely heavily on neigh-
borhood context (manager, skip-manager, peer titles, direct reports) to distinguish
semantically close roles (e.g., “Project Manager” vs. “Product Manager”). Most prior
classifiers ingest only isolated title text.

• Taxonomy scale and drift: Real taxonomies may exceed hundreds of (function,
sub-function) pairs and evolve across engagements and industries. Retraining large
supervised models for each variant is costly and slow.

• Sparse, privacy-restricted data: Access to historical rosters is limited; models
requiring large labeled corpora are impractical in consulting contexts with strict data
use constraints.

These constraints motivate our design choices for how to approach the roster mapping
problem:

• Context Enrichment: We synthesize hierarchical and relational metadata for each
employee, then summarize it with LLM-generated keywords/descriptions prior to
embedding, enabling role disambiguation beyond surface title strings.

• Deliberately Simple Embeddings: We adopt robust general-purpose embeddings
and invest effort in structural/context enrichment rather than domain-adapted em-
bedding models, given limited training data.

• Hybrid Retrieval-Augmented Architecture: Vector + BM25 retrieval narrows
candidate space before LLM reasoning, improving accuracy and scalability when |T |
is large without requiring domain-specific model retraining.

already capture. When multiple taxonomy entries are semantically equivalent (e.g., (Engineering, Software
Developer) and (Engineering, Software Engineer)), we consolidate them into a single canonical entry (e.g.,
Engineering, Software Engineer) during taxonomy preprocessing to prevent metric inflation from trivial
synonym matches.
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Figure 1: Roster mapping workflow showing the end-to-end process from raw inputs to
final assignments. First, taxonomy entries are enriched with contextual descriptions and
embedded into a searchable vector database. Next, employee records are enriched with
hierarchical context (manager, peers, reports) and embedded for similarity search against
the taxonomy database. The top-k most relevant taxonomy candidates are then combined
with the enriched employee data in a structured prompt sent to an LLM classifier, which
produces the final job function and sub-function assignments along with confidence scores.

• Zero-Shot Prompt-Driven Classification: LLM classification with carefully con-
structed prompts allows rapid adaptation to new industries and taxonomies with no
fine-tuning cycle.

• Synthetic Data Generation: Custom organization and taxonomy synthesis pro-
vides diverse evaluation scenarios while respecting privacy constraints on real orga-
nizational data.

In summary, the roster mapping problem demands a system that fuses hierarchical context,
scalable retrieval, and taxonomy curation rather than relying solely on title text embeddings
or supervised retraining. The following sections formalize the problem and describe the
architecture and its measured performance.

5 Algorithm and Workflow

We outline the roster mapping process in Algorithm 1 to provide context for more detailed
descriptions of system components found in other sections. Section 6 describes functions
related to embeddings, enrichment, hybrid search, and LLM classification.

Both employees and taxonomies go through an enrichment and embedding process
before being combined together in one prompt sent to the LLM classifier.

A visual representation of Algorithm 1’s workflow is found in Figure 1.
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Algorithm 1 Roster Mapping Algorithm

X ← employees
T ← taxonomy
if evaluating on synthetic data then

Y ← ground truth (sub-)function assignments
end if

Ŷ ← {} ▷ Predicted (sub-)function assignments
Tenriched ← EnrichTaxonomy(T )
Temb ← EmbedTaxonomy(Tenriched)
for all x ∈ X do

x+ ← EnrichEmployee(x)
emb← EmbedEmployee(x+)
candidates← HybridSearch(emb, Temb)
ŷi, ci ← LLMClassify(x+, candidates) ▷ Prediction and confidence vectors
Ŷ [x]← ([ŷi1, ŷi2, . . . , ŷik], [ci1, ci2, . . . , cik])

end for

if Evaluating on synthetic data then
MRR, Accuracy, HitRate@k ← CalculateMetrics(Y, Ŷ )

end if

return Ŷ
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6 Model

The roster mapping model has a searchable vector database and a LLM classifier as its
two main components. Recall that the model takes as input employees X and a taxonomy
T to compute ŷi = g(xi;T ), the job function and sub-function assignments for employees.
The main engine for inferring ŷi is the LLM classifier, but it needs to be supplied with a
prompt containing adequate context and information. The vector database plays that role
by injecting a prompt with employee information and taxonomy candidates before that
prompt is passed to the LLM for a final classification decision.

In the course of iteratively evaluating and improving the model, we used synthetic
organizations and taxonomies as discussed in Sections 7.1 and 7.2. Implementation details
are found in Appendix A.

6.1 Hybrid Retrieval

The goal of the retrieval stage is to pair an “enriched” employee e+i (which we discuss
shortly) with several promising taxonomy candidates [ti1, ti2, . . . tik] that might be good
job function and job sub-function assignments; this pairing (e+i , [ti1, ti2, . . . tik]) is then
passed to the LLM classifier for a final decision ŷi.

The searchable vector database is composed of an embedding for each ti ∈ T . Taxonomy
entries are also enriched by asking the LLM to produce a textual description of what
duties a particular job function and sub-function tuple might have. After this taxonomy
enrichment, we calculate an embedding vector for the job function and sub-function entry.
Each embedding vector captures information about a particular combination of job function
and sub-function that exists in a given taxonomy, and these vectors are generated by
OpenAI’s text-embedding-3-small model.

This enrichment step parallels evidence from adjacent taxonomy mapping research (e.g.,
TELEClass [7]), which shows that augmenting terse labels with LLM-generated duty narra-
tives improves downstream retrieval and classification quality. We incorporate enrichment
in production, but stop short of performing more aggressive, automated taxonomy restruc-
turing, given the potential risks and complexities involved.

A retrieval query against the database seeks the taxonomy entries most similar to en-
riched employee e+i . While ei contains basic employee information, e+i includes information
external to ei such as manager job title, skip-manager (manager’s manger) job title, direct
reports, peers, etc. The model then takes the additional step of using gpt-4o to read this
context and generate a list of summary keywords along with a general description. From
there, text-embedding-3-small generates an embedding of the concatenated context,
keywords, and description before using that embedding to search against the taxonomy
entries in the database to find the top-k5 closest (function, sub-function) tuples.

5We return the top k = 10 taxonomy entries in our model
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The keyword description generation uses gpt-4o and thus requires an accompanying
prompt. The prompt is constructed from a basic recipe:

(a) Personify the system as a Human Resources expert that specializes in identifying
job functions and sub-functions based on textual descriptions.

(b) Inject employee information: Add employee ei’s basic information (i.e. title,
salary, number of direct reports, compensations, etc.)

(c) Enrich with context: Include ei’s secondary inferred information (i.e. manager’s
title, skip-manager’s title, peer information, etc.)

(d) Request structured output: Given all prior information, request a k-keyword
summary6 and general description of ei.

With the prompt in hand, gpt-4o can be invoked to produce the desired keyword sum-
mary and general description composing e+i ; we can likewise invoke text-embedding-3-small
to create an embedding for e+i and search the database for [ti1, ti2, . . . tik].

To address the challenges posed by non-standard naming conventions, semantic ambigu-
ity, and varying taxonomy sizes, our retrieval system employs a hybrid search approach that
combines vector-based semantic similarity with keyword-based lexical matching. Rather
than relying solely on embedding similarity, we augment the retrieval process with BM25
full-text search, which applies statistical term-frequency ranking to the textual descrip-
tions of taxonomy entries. The hybrid search computes a weighted combination of vector
similarity scores and BM25 relevance scores, with weights wv = 0.8 for vector search and
wbm25 = 0.2 for BM25. This weighting prioritizes semantic understanding while ensuring
that exact keyword matches receive appropriate credit, particularly important when job
titles use standardized terminology or industry-specific jargon.

The hybrid approach provides several key benefits for the roster mapping problem.
First, it handles title variation gracefully: vector search recognizes that “SDE” and “Soft-
ware Developer” are semantically equivalent, while BM25 rewards exact matches when
standardized titles appear. Second, it disambiguates identical titles in different contexts—
for instance, distinguishing between “Contractor” in IT versus Construction by leveraging
both the semantic context from enriched employee data and keyword signals from job
function fields. Third, the combination proves robust across industries: while vector em-
beddings may suffer from training data bias toward common industries like technology,
BM25 provides a statistical safety net that works equally well across specialized domains.
The quality of the top-k candidates retrieved by hybrid search is critical to overall system
performance, as these candidates form the input to the LLM classifier in the subsequent
stage. If the ground-truth taxonomy entry does not appear in the top-k results, the LLM
has no opportunity to select the correct answer. Our experimental results demonstrate

6We use 5 keywords in our model
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that the hybrid approach successfully places relevant candidates within the top-10 results,
as evidenced by strong HitRate@5 and MRR metrics across diverse datasets.

6.2 LLM Classifier

Given the complex knowledge and data required to properly train a traditional ML model to
estimate g(·), we instead opt to use OpenAI’s gpt-4o and careful prompting to accomplish
the same task.

As mentioned in Section 6.1, the LLM receives a pair (e+i , [ti1, ti2, . . . tik]) as input.
Properly invoking gpt-4o requires us to construct a prompt pi, which follows the same
basic recipe steps (a), (b), and (c) shown in Section 6.1. But instead of adding a request
for keywords as in (d), we inject [ti1, ti2, . . . tik] and ask the LLM which tij among the list
is the most appropriate assignment for e+i .

7 Data

As indicated in Equations 4, 5, and 6, ground-truth taxonomy mappings yi ∈ Y are
required to properly evaluate mapping model performance. Historical data from organiza-
tional analyses would ideally provide complete employee rosters with assigned mappings.
However, organizational data is generally unavailable for research purposes due to privacy
concerns, regulatory restrictions, and proprietary business considerations that limit data
sharing. Additionally, available mapping exercises typically involve larger organizations
in specific industries such as automotive manufacturing, creating generalization challenges
when developing models that must perform across diverse organizational contexts and
industry sectors. While these constraints are not insurmountable, addressing them re-
quires long-term data collection efforts. To address these data limitations, we developed
a synthetic data generation approach that creates realistic organizational structures and
taxonomies. While off-the-shelf libraries such as Synthetic Data Vault (sdv) and YData
Synthetic (ydata-synthetic) exist for synthetic data generation, they proved inadequate
for our specific requirements. These libraries either generated unrealistic organizational
hierarchies that failed to capture authentic reporting relationships or required substan-
tial historical organizational data as training seeds—data that was unavailable due to the
privacy constraints mentioned above.

We therefore built a custom synthetic data generation system specifically designed for
the roster mapping problem. This system produces complete datasets containing employee
rosters X, taxonomies T , and ground-truth mappings Y that reflect the diversity and
complexity of real organizational contexts across different industries and company sizes.
Our synthetic data generation proceeds in two coordinated stages: organization synthe-
sis (Section 7.1) and taxonomy synthesis (Section 7.2). The organization synthesis stage
creates realistic hierarchical structures with appropriate reporting relationships, while the
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(a) A synthetic technology startup with ap-
proximately 60 employees. The organization
maintains a flat hierarchy with the deepest
reporting level only two steps from the CEO
(center node). This structure reflects typical
early-stage startup characteristics.

(b) A synthetic maritime logistics company.
There are ∼17000 employees and the organi-
zation has many layers of management.

Figure 2: Synthetic organizations generated using LLMs.

taxonomy synthesis stage generates industry-specific job function and sub-function cate-
gories. For each simulated company, an LLM derives a plausible set of job function and
sub-function entries conditioned on the organization’s industry, size, and structural char-
acteristics. By jointly generating the roster and taxonomy rather than treating them as
independent components, we ensure that evaluation datasets span the diverse organiza-
tional contexts that the roster mapping system encounters in practice while maintaining
internal consistency between organizational structure and job categorization schemes.

7.1 Synthetic Organizations

In our synthetic data generator, an organization is a directed tree G = (X,E) where
ei = (xa, xb) ∈ E indicates employee xa manages employee xb. We also need accompanying
function/sub-function pairs yi ∈ Y for employees xi ∈ X for our mapping needs7.

Our organization generator is a simple recursive function. We start from a root (CEO
or a super-root if there are co-CEOs) and create children based on parameters θ, recursing
on each child. Each generated node receives attributes xi = (xi1, xi2, . . . xij) sampled
from distributions governed by θ. In practice we use lightweight parametric choices (e.g.,

7Recall that yi = (fi, sfi)
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truncated normal for non-negative counts or multinomial for categorical variables) rather
than committing to any single family.

Termination of the generation process is determined by θ: if properly parameterized,
eventually deep nodes will generate no additional children. Each type of employee has some
θi = {θi1, . . . θik} that parameterizes a distribution over how many children the employee
can have; in our case, the model uses a truncated normal distribution (truncated at zero
to ensure non-negative employee counts), so θi = {µi, σi}. Deep nodes will have µi ≈ 0
and σi ≈ 0, so they will rarely generate new direct reports and the recursion will end.

We determined good θ to create realistic organizations through two methods. The first
was by examining existing organizational data to calculate θ = {θ1, θ2, . . . θk}, and the
second was using a large language model to create θ.

Calculating θ from existing organizations involves gathering summary statistics and
fitting simple distributions keyed on function, sub-function, and depth. For example, θ
might specify that a Software Engineer / Architect three levels from the CEO has a mean
of 5 direct reports, a standard deviation of 2, and a multinomial over direct report types
with probabilities [0.7, 0.2, 0.1] for [Software Engineer / AI Engineer, Software Engineer /
DevOps, Administration / Assistant], conditioned on the manager’s title and organizational
depth. This frequentist construction just counts occurrences under different contexts; it is
efficient but depends on access to sufficiently diverse real rosters.

When comprehensive organizational data are not readily available, an alternate method
to obtain θ is through systematic desk research, including archival research and web-based
data collection. However, this method has little chance of working in practice because such
parameters and statistics are generally unavailable or proprietary. These conditions lead
us to consider using LLMs to parameterize θ instead. LLMs are useful for parameterizing θ
because they are trained using all available text. The text corpus contains some knowledge
on practically all topics including information on company structures. Because our own
research is limited by a lack of available data, we can exploit an LLM’s general knowledge
to fill in our missing parameters. Prompts posed to gpt-4o are quite simple: as a base, we
provide a company’s description, its industry, and any other relevant context. Then given
an archetypal employee ae (a function, sub-function, and depth), we ask gpt-4o create
various θi ∈ θ that describes the characteristics of ae’s children. As mentioned before,
these characteristics include the mean number of potential children, the standard deviation
of that number, the functions and sub-functions of the children, and how those (sub-
)functions are distributed. This children information results in new archetypal employees,
and we recursively generate additional θi ∈ θ from these archetypal children. Once fully
constructed, θ can be sampled to produce synthetic organizations like those pictured in
Figures 2a and 2b.

To simulate real-world noisiness, we include an adjustable probability8 of reporting
chains being incorrect. That is, instead of producing an employee’s direct reports according

85% chance in our generation process.
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to the appropriate θi, we replace a direct report with a randomly generated employee
drawn from any distribution. This results in situations such as a (Legal, General Counsel)
employee reporting to a (IT, Cyber Security) employee. Such noisiness can reflect situations
resulting from companies merging with one another or poor organizational practices.

Another procedure to add noise is to inject ambiguous job titles into the organization.
To illustrate, suppose e1 → (IT, Software Developer) and e2 → (Construction, Electrician).
Both e1 and e2 could conceivably have the same job title “Contractor” even though their job
functions and sub-functions are different. To inject ambiguity, we select pairs of employees
and ask gpt-4o to create a job title that the pair can share; we then replace both their job
titles with the suggested title. Ambiguity injection is a post-processing step that occurs
after G = (X,E) has already been generated.

We created several datasets for evaluation purposes.

1. Historic: A Technology and Media organization parameterized by roster data from
a past organizational analysis.

2. Historic, Ambiguous Titles: The same as above, but with some job titles made
ambiguous.

3. Construction: A Construction company parameterized by LLM.

4. Amusement Park, Hierarchy: An amusement park parameterized by LLM that in-
cludes manager, skip-manager, and direct reports data.

5. Amusement Park, Deduplicated: An amusement park parameterized by LLM with
deduplicated job titles.

7.2 Synthetic Taxonomies

Synthetic organizations generated with an LLM yield an initial taxonomy T of (function,
sub-function) tuples assigned to employees that serves as the ground-truth reference, but
it often contains near-duplicate paraphrased variants (e.g., (Human Resources, Payroll) vs.
(HR, Employee Payroll)). Left unmerged, these variants inflate the search space and can
artificially raise apparent accuracy by presenting multiple semantically identical “correct”
answers. We therefore apply a systematic two-stage consolidation pipeline: (1) hierarchi-
cal clustering to reduce the naive O(|T |2) pairwise comparison space to groups of likely
duplicates, and (2) within-cluster normalization and merging that selects a canonical rep-
resentative for each semantically equivalent set. The cleaned taxonomy is then passed to
the mapping pipeline.

Stage 1: Hierarchical Clustering. Each taxonomy entry is converted to an enriched
text string combining industry, function, sub-function (and optional description). We
embed all strings with sentence-transformers/all-MiniLM-L6-v2 and compute cosine
distances. Using agglomerative (Ward) clustering on the embedding vectors, we sweep a
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cut threshold from 0.3 to 0.9 and select the smallest threshold that (a) keeps median cluster
size ¡ 5 and (b) materially reduces the total candidate pairs. The resulting clusters serve
as compact candidate duplicate groups for Stage 2.

Stage 2: Within-Cluster Merging. We calculate pairwise cosine similarities within
each cluster. Entry pairs exceeding a configurable similarity threshold τ (typically ≥ 0.8)
are merged, retaining the longer, more descriptive entry as the canonical representative.
We track all merge relationships in a mapping M : Tllm → Tcleaned and resolve transitive
merges to ensure consistency—if ta → tb and tb → tc, then M(ta) = tc. The roster
is then updated by applying M to all employee assignments: for each employee xi with
original assignment yi ∈ Tllm, we replace yi with M(yi) ∈ Tcleaned. Historical mappings are
preserved in auxiliary columns (yoldi , ynewi ) to maintain provenance.

The impact of deduplication is substantial. In one synthetic amusement park organi-
zation, the initial LLM-generated taxonomy contained |Tllm| = 461 unique entries. Af-
ter deduplication with τ = 0.8, this reduced to |Tcleaned| = 115 distinct entries—a 75%
reduction. Beyond computational efficiency, deduplication creates a more realistic and
challenging classification task: without consolidation, the model could achieve a “correct”
classification by selecting any of several semantically identical options, making the task ar-
tificially easier than real-world scenarios. The cleaned taxonomy better reflects real-world
organizational structures where job titles are standardized and controlled, improving both
candidate retrieval efficiency and the validity of our evaluation metrics.

8 Results

The roster mapping model was evaluated on Accuracy (Equation 5), MRR (Equation 6),
and HitRate@5 (Equation 7). Evaluation took place across several datasets of varying
complexity to give insight on how performance differed across industry and size. Indus-
try type may significantly impact model performance. Organizations in Technology and
Media (the Historical datasets) achieved much higher Accuracy and MRR scores, while
Entertainment and Hospitality organizations (the Amusement Park datasets) proved more
challenging to map accurately. This performance gap likely stems from training data
exposure bias: LLMs may encounter substantially more text about technology compa-
nies—software development careers, organizational structures, job functions—than about
specialized industries like hospitality or entertainment. The abundance of news articles,
blog posts, and professional discussions about tech companies could provide richer contex-
tual knowledge for understanding their organizational patterns, whereas niche industries
like amusement parks may receive limited coverage. Consequently, the model appears to
demonstrate stronger performance when mapping familiar organizational contexts but may
struggle with specialized domains where training data could be sparse.

We also observed that incorporating hierarchical information substantially improves
model performance. This finding aligns with our intuition based on observing human
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Dataset Fn Hit@5 Fn Acc Sub-fn Hit@5 Sub-fn Acc MRR

Historical 0.95 0.86 0.78 0.56 0.64
Historical (Ambig Titles) 0.95 0.60 0.86 0.26 0.48
Construction 0.79 0.51 0.77 0.46 0.58
Amusement Park (Hierarchy) 0.52 0.32 0.49 0.30 0.37
Amusement Park (Dedup) 0.50 0.21 0.41 0.21 0.26

Table 1: Summarized roster mapping results on different datasets. Each value represents
the average performance across multiple runs. Detailed results for individual runs on each
dataset are provided in Appendix C.

reviewers, who frequently rely on an employee’s organizational context—manager, skip-
manager, peers, and direct reports—when performing manual mapping tasks. These con-
textual factors often prove decisive when an employee’s basic information (title, compen-
sation, etc.) alone is insufficient for confident classification. To validate this hypothesis,
we conducted a series of ablation experiments where we systematically varied which hier-
archical features were included during the employee enrichment process. As expected, we
observed consistent improvements in HitRate@5 performance as more contextual informa-
tion was incorporated (see Table 2).

Experiment Configuration Hit@5 Relative Change

No Hierarchy Info 0.633 –
Direct Report Info 0.593 -6.3%
Skip Manager Info 0.687 +8.5%
Manager Info 0.720 +13.7%
Manager + Skip Manager Info 0.713 +12.6%
All Information 0.773 +22.1%

Table 2: Performance improvement with hierarchical information

9 Conclusion

We have presented an LLM-enhanced roster mapping system that addresses the practical
challenges of enterprise-scale organizational analysis through retrieval-augmented genera-
tion. Unlike traditional approaches that rely on job title embeddings with nearest-neighbor
lookup or supervised classifiers requiring extensive labeled data, our architecture com-
bines hierarchical context enrichment, hybrid search, and zero-shot LLM classification to
handle messy organization-specific titles, evolving taxonomies across industries, and the
sparse, privacy-restricted data typical of consulting engagements. By incorporating man-
ager chains, peer information, and direct reports alongside general-purpose embeddings,
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the system disambiguates semantically close roles without domain-specific model retraining
or costly fine-tuning cycles.

Our synthetic data generation pipeline enabled rigorous evaluation across diverse in-
dustries while respecting privacy constraints, demonstrating that thoughtful integration
of organizational context with retrieval and LLM reasoning produces practical tools for
accelerating human-driven roster mapping. Future work includes evaluation on real or-
ganizational data, refinement of hierarchical context encoding, and active learning from
human corrections.
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A Implementation

We implemented the roster mapping model using Microsoft Azure’s Durable Functions
framework to orchestrate parallel processing through a fan-in/fan-out paradigm that ap-
plies to both taxonomy preparation and employee classification. During taxonomy process-
ing, the orchestrator fanned out individual taxonomy entries across multiple workers for
concurrent enrichment and embedding generation. These workers invoked Azure OpenAI’s
gpt-4o to generate semantic descriptions and text-embedding-3-small to produce vector
embeddings. The orchestrator then fanned in the enriched taxonomy entries and persisted
them to Azure Cosmos DB, which serves as both a document store and vector database.

For employee processing, the orchestrator divided the roster into batches and fanned
out classification tasks across parallel workers. Each worker enriched employee records
with hierarchical context, generated embeddings, executed hybrid search queries combining
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vector similarity and BM25 keyword matching against the Cosmos DB taxonomy index,
and invoked the LLM classifier with the top-k candidate taxonomies. The orchestrator
fanned in all classification results to produce the complete roster mapping. This serverless
implementation enabled horizontal scaling to handle organizations of arbitrary size while
maintaining fault tolerance through automatic retries and distributed state management,
ensuring robust processing even when individual operations failed.

B HR Embedding Model

We hypothesized that using an embedding model specifically trained on HR data (job list-
ings, resumes, descriptions, etc.) would outperform OpenAI’s text-embedding-3-small
model, which is trained on general text data. To test this hypothesis, we modified the
roster mapping model to use the JobBERT-v2 model instead of text-embedding-3-small
on the Construction dataset.

Although JobBERT-v2 is a much smaller model than text-embedding-3-small, we
believed its HR-specific training would give it an edge in capturing the semantics of job
functions and sub-functions. However, experimental results showed that performance dif-
ferences were minimal and not statistically significant across all metrics.

C Detailed Results

This section provides granular experimental results for each dataset across multiple runs,
showing the consistency and variability of the model’s performance.

Run
Function
HitRate@5

Function
Accuracy

Sub-function
HitRate@5

Sub-function
Accuracy MRR

1 0.95 0.87 0.78 0.56 0.64

2 0.95 0.87 0.78 0.59 0.66

3 0.96 0.87 0.79 0.55 0.65

4 0.95 0.85 0.77 0.55 0.63

5 0.95 0.84 0.79 0.56 0.64

Table 3: Results for the Historical dataset

ß

19



Run
Function
HitRate@5

Function
Accuracy

Sub-function
HitRate@5

Sub-function
Accuracy MRR

1 0.94 0.43 0.81 0.08 0.34

2 0.96 0.84 0.89 0.52 0.65

3 0.94 0.60 0.85 0.25 0.48

4 0.96 0.50 0.89 0.11 0.38

5 0.96 0.64 0.87 0.32 0.54

Table 4: Results for the Historical, Ambiguous Titles dataset

Run
Function
HitRate@5

Function
Accuracy

Sub-function
HitRate@5

Sub-function
Accuracy MRR

1 0.82 0.51 0.79 0.47 0.59

2 0.76 0.53 0.77 0.49 0.58

3 0.75 0.50 0.72 0.45 0.56

4 0.79 0.52 0.77 0.46 0.58

5 0.81 0.48 0.78 0.45 0.57

Table 5: Results for the Construction dataset

Run
Function
HitRate@5

Function
Accuracy

Sub-function
HitRate@5

Sub-function
Accuracy MRR

1 0.50 0.32 0.48 0.30 0.38

2 0.57 0.31 0.55 0.28 0.39

3 0.51 0.34 0.48 0.32 0.38

4 0.46 0.30 0.42 0.25 0.32

5 0.55 0.34 0.54 0.32 0.41

Table 6: Results for the Amusement Park, Hierarchical dataset

Run
Function
HitRate@5

Function
Accuracy

Sub-function
HitRate@5

ßSub-function
Accuracy MRR

1 0.57 0.22 0.47 0.17 0.27

2 0.51 0.20 0.45 0.18 0.25

3 0.58 0.21 0.45 0.17 0.26

4 0.58 0.20 0.50 0.18 0.28

5 0.50 0.21 0.41 0.21 0.26

Table 7: Results for the Amusement Park, Deduplicated dataset
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